Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage.
نویسندگان
چکیده
The performance of SnO2 nanoparticle (NP) aggregates for reversible storage of Li(+) was improved after conformal encapsulation of individual aggregates with graphene (i.e., encapsulation without changing the underlying morphology of SnO2 aggregates). Conformal encapsulation was carried out by modifying the surface of SnO2 NP aggregates with amine terminating groups to increase their binding affinity to graphene. The thickness of the graphene encapsulation could then be varied by the amount of graphene oxide (GO) solution used in the preparation. Electron microscopy confirmed the successful coating of graphene as a thin layer on the NP aggregate surface. This unique construction method resulted in SnO2-graphene composites with a satisfying cycling performance. In particular a composite with only 5 wt% graphene could deliver, without the use of any carbon conductive additive, a charge (Li(+) extraction) capacity of 700 mA h g(-1) at the regular current density of 0.1 A g(-1) and 423 mA h g(-1) after a tenfold increase of the current density to 1 A g(-1) in the 0.005-2 V voltage window. There was evidence to suggest that the composite performance was determined by Li(+) diffusion across the basal plane of the graphene layers.
منابع مشابه
Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials
The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique a...
متن کاملImproved electrochemical performance of tin-sulfide anodes for sodium-ion batteries
Due to their highly reversible capacity, tin-sulfide-basedmaterials have gained attention as potential anodes for sodium-ion and lithium-ion batteries. Nevertheless, the performance of tin sulfide anodes is much lower than that of tin oxide anodes. The aim of the present investigation is to improve the electrochemical performances of SnS anodes for sodium-ion batteries using conventional organi...
متن کاملGraphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries†
This study reports a novel strategy of preparing graphene composites by employing graphene oxide as precursor and oxidizer. It is demonstrated that graphene oxide can oxidize stannous ions to form SnS2 and is simultaneously reduced to graphene, directly resulting in the formation of SnSx–graphene (1 < x < 2) nanocomposites. The particle size of SnSx in the nanocomposites is tailored to be about...
متن کاملSilver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine
Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivit...
متن کاملFabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries
Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 13 شماره
صفحات -
تاریخ انتشار 2013